Archive for 'Intelligence and IQ'

Neuroplastic changes found following brainwave training

A user just sent me a link to an exciting new study outlined in Science Daily about brainwave training resulting in changes in brain plasticity (or the ability of the brain to adapt to change):

Significant changes in brain plasticity have been observed following alpha brainwave training.

A pioneering collaboration between two laboratories from the University of London has provided the first evidence of neuroplastic changes occurring directly after natural brainwave training. Researchers from Goldsmiths and the Institute of Neurology have demonstrated that half an hour of voluntary control of brain rhythms is sufficient to induce a lasting shift in cortical excitability and intracortical function.

http://www.sciencedaily.com/releases/2010/03/100310114936.htm

40 Hz and Consciousness

A new study looks at the significance of gamma waves in consciousness. Gamma has for some time been suspected as being an important band for self-awareness and other aspects of consciousness – 40 hz in particular. This study refines that thought.

Here’s the abstract: http://cercor.oxfordjournals.org/cgi/content/abstract/19/8/1896

What makes us become aware? A popular hypothesis is that if cortical neurons fire in synchrony at a certain frequency band (gamma), we become aware of what they are representing.

…we also observed increases in gamma band ERS within the amygdala, visual, prefrontal, parietal, and posterior cingulate cortices to emotional relative to neutral stimuli, irrespective of their availability to conscious access. This suggests that increased gamma band ERS is related to, but not sufficient for, consciousness.

Does height affect our health?

If you’ve always felt a little vertically challenged, perhaps a bit disadvantaged due to your inability to see the stage in large crowds, or envied your taller counterparts who don’t have to carry a footstool in order to reach your higher cabinets, you have one more reason to feel slighted. People with shorter armspans and leg lengths have a higher risk of dementia and Alzheimer’s disease.

According to the article “Fact or Fiction?: It’s No Tall Tale, Height Matters”, in Scientific American online, people who are taller tend to be more successful and earn higher saleries. Height is associated with intelligence and educational attainment, and now, according to a paper titled “Knee height and arm span: A reflection of early life environment and risk of dementia” published in Neurology, people with shorter limbs are also at greater risk for dementia and Alzheimer’s disease and other chronic diseases as well.

OK. Full disclosure. The author of the study in Neurology was me. I learned from an anthropologist I met at a conference that limb length is primarily determined in the first few years of life. Given that the brain is also developing at that time (especially the regions involved in Alzheimer’s disease), we decided to use limb length as marker for early life nutrition to examine risk of dementia. Limb length had already been associated with hypertension and other chronic diseases, like cardiovascular disease and diabetes, and had been shown to be associated with dementia in a Korean population. Ours was the first to show the effect in a Western population.

So now, dear reader, you are probably thinking, “isn’t height genetic?” and either “but I am/my friend is/my brother is… vertically challenged, and we weren’t starving”. “Yes” I say to both questions. Height is 80% genetic and 20% environmental in Western developed countries, but the proportion of variation due to genetic factors is lower in developing countries where there are more people who can’t afford a well balanced diet. The population we were looking at was born between 1888-1924. Given that so little was known about nutrition back then, its likely that that proportion of variation due to environmental factors (mostly nutritional) was much higher than 20%. Much research has been done on the causes of stunting, and consensus by those in the field is that stunting is not determined by the total number of calories, but the quality of nutrition (the variation of nutrients and amount of protein) in the diet. Furthermore, there is still much to learn about the effects of minerals, nutrients and phytochemicals on our health. So while there are recommendations for new mothers on how to adequately feed their newborns, recommendation are continuing to evolve with more research.

I was advised that this research was not worth pursuing as “there is nothing you can do about height”. But is there something we can do about the height of future generations? “Yes we can!”. Readers can help educate young parents, contact your legislators to help fund programs that help feed young children, or donate to organizations that do. And is there something that we can do to lower our risk of developing dementia and Alzheimer’s? “Yes we can!”. For those who are vertically challenged, or have a genetic susceptibility to any disease, it’s important to keep in mind what you can change. You can make sure that you eat a balanced diet, eat plenty of fruits and vegetables, get enough fatty fish (or alternative sources of omega-3′s). You can keep abreast of current research on nutrition, exercise and health. You can consult a nutritionist to make sure that your diet contains all the essential nutrients you need to stay healthy. We need to exercise, keep their mind active, and maintain social connections.

And if you are not completely soothed by what knowing what you can do to lower your risk, keep this in mind: Being vertically challenged does not prevent you from publishing in Neurology, or from Scientific American from picking up your story!

New study on Brainwave Entrainment (By Dr. Huang)

I’m pleased to announce the publication of “A Comprehensive Review of the Psychological Effects of Brainwave Entrainment” in Alternative Therapies in Health and Medicine this month. This paper is the most comprehensive review of peer reviewed research in the subject, and was written in order to inform those within and the beyond the field of brainwave entrainment (BWE), and to provide sufficient background for future research.

Most of the research known to date has been summarized by David Siever in two unpublished manuscripts that he sells and distributes. They contain much valuable information about the history of BWE, both published and unpublished studies and proposed mechanisms of action. However, despite their length, they do not provide a complete listing of the peer reviewed literature, nor have his manuscripts faced the scientific scrutiny that comes with publishing in a peer reviewed journal. In fact, in our comprehensive search, we found articles that have never before been mentioned by those in the brainwave entrainment development and scientific community. Why? Believe it or not, the problem is in the inconsistency in terminology used to describe BWE. The term, BWE, until today, cannot be found in the scientific literature. Instead it is referred to as audiovisual stimulation, photic stimulation, photic driving, auditory entrainment, etc, etc. In all I did a search using 31 different terms to look for articles on brainwave entrainment, which returned 27,830 articles using Ovid (1 out of the 4 databases I used to do the search). Only a very small handful of these turned out to be articles on BWE. Thus much of the credit needs to go to my bosses at Transparent Corporation, who gave me the time to do this exhaustive, time consuming, and yet important work.

I looked for papers with psychological terms that described outcomes that I’d seen associated with BWE on the web, in conferences and in the published and unpublished literature. After combining the two searches, and screening for those that were indeed articles addressing psychological outcomes of BWE, and those that passed some basic scientific criteria, we ended up with just 20 articles.

The psychological effects that had been examined in relation to BWE included cognitive functioning (we divided it into verbal, non-verbal, memory, attention and overall intelligence), stress (long and short-term), pain, headache/migraines, mood, behavior and pre-menstrual syndrome (PMS). When two or more studies had examined similar outcomes, we placed them into tables for greater comparability. Thus we had five tables divided by cognitive functioning, stress, pain, headaches/migraines and mood. Studies used a variety of different frequency protocols and stimulation methods which are outlined in the tables.

Out of the 20 studies, 17 were actually developed to support or confirm a hypothesis, and of these, all found a positive effect in at least one outcome. And in each outcome mentioned, at least one study had a positive finding. What was remarkable was that for some outcomes, only one of several protocols had a positive effect, while others were improved by a variety of different protocols. The most consistent positive findings were found in attention (4/4 studies), pain (3/3 studies) and headache/migraines (3/3). While positive effects were found in all other outcomes examined except for mood, either fewer studies had been conducted or a smaller percentage of the protocols examined were effective. Mood was examined in the 3 studies where the effects of theta were examined on a variety of outcomes. So we believe that the ability of brainwave entrainment to positively effect mood has not been properly tested in the peer reviewed literature.

Overall, we conclude that brainwave entrainment shows real potential to positively affect psychological outcomes. However, more and bigger studies need to be done, using additional outcomes and outcomes already examined. We hope that we’ve provided the necessary background to inspire future research and collaboration, so that the field of brainwave entrainment can gain recognition and momentum in the scientific literature.

To view a copy of this article, visit:

http://www.transparentcorp.com/research/

Tina L. Huang, Ph.D.
Director of Research
Transparent Corporation

The effect of belief on intelligence

A unique and fascinating new study was released this year by Carol Dweck, a psychologist at Stanford University, researching the effects of belief on cognitive performance.

The results: children who believed that intelligence was malleable and could be improved were much more likely to perform well in school. Children who believed intelligence was something set in stone – a genetic gift from birth that never changes – did not perform as well.

To test this, Dweck separated one hundred 7th grade students into 2 equal groups. All students had suffering math scores. One group was taught good studying habits, the other was taught about the plasticity of the brain, and how the brain can change; new neural connections can be formed and intelligence can actually be increased.

At the end of the semester, the children who had the crash course in neuroscience ended up performing better than those who were taught study skills! This is because their beliefs about intelligence had changed.

Here’s some excerpts from an article on this:

“Some students start thinking of their intelligence as something fixed, as carved in stone,” Dweck says. “They worry about, ‘Do I have enough? Don’t I have enough?’”

Dweck calls this a “fixed mindset” of intelligence.

“Other children think intelligence is something you can develop your whole life,” she says. “You can learn. You can stretch. You can keep mastering new things.”

She calls this a “growth mindset” of intelligence.  

“When they studied, they thought about those neurons forming new connections,” Dweck says. “When they worked hard in school, they actually visualized how their brain was growing.”

“We saw among those with the growth mindset steadily increasing math grades over the two years,” she says. But that wasn’t the case for those with the so-called “fixed mindset.” They showed a decrease in their math grades.

“If you think about a child who’s coping with an especially challenging task, I don’t think there’s anything better in the world than that child hearing from a parent or from a teacher the words, ‘You’ll get there.’ And that, I think, is the spirit of what this is about.”

In the articles on our website, we’ve been talking for years about how beliefs can work for or against your cognitive performance. Many people who approach us with cognitive issues want to focus only on the neurological or physiological aspect of that. Often, after a few months of work, it becomes apparent that a psychological approach is needed – the physiology is right for peak performance, but the belief system keeps the brain stuck in first gear. Negative beliefs about one’s intelligence can often be very hard to counteract. This study is useful in that it shows that merely learning more about the brain can help give your brain the boost it needs to make real progress.

NPR has a nice broadcast of this new research online: http://www.npr.org/templates/story/story.php?storyId=7406521

Short term vs long term meditation on attention and delta waves

The beneficial effects of meditation on general health are well known, but what is surprising to many researchers is its positive effect on attention.

Australian Neuroscientist Dylan DeLosAngeles measured the brainwaves of a 13-person meditation group as they progressed through five different meditative states. He expected to find a brain pattern that slowly moved toward sleep, or increased Delta waves.

Instead, he found that Delta waves actually decreased. The brainwaves of these meditators indicated a calm, attentive mind, as opposed to a sluggish or dazed one. Alpha waves increased during the first states of meditation analyzed, and later decreased as the meditators moved on to other states.

Last month another study was published on the meditation-attention link, this time analyzing the effects on inexperienced students after just 5 days of meditation training.  This is unique because most of research so far has been focused on experienced meditators.

Here is what they found:

Recent studies suggest that months to years of intensive and systematic meditation training can improve attention. However, the lengthy training required has made it difficult to use random assignment of participants to conditions to confirm these findings. This article shows that a group randomly assigned to 5 days of meditation practice with the integrative body–mind training method shows significantly better attention and control of stress than a similarly chosen control group given relaxation training. The training method comes from traditional Chinese medicine and incorporates aspects of other meditation and mindfulness training. Compared with the control group, the experimental group of 40 undergraduate Chinese students given 5 days of 20-min integrative training showed greater improvement in conflict scores on the Attention Network Test, lower anxiety, depression, anger, and fatigue, and higher vigor on the Profile of Mood States scale, a significant decrease in stress-related cortisol, and an increase in immunoreactivity. These results provide a convenient method for studying the influence of meditation training by using experimental and control methods similar to those used to test drugs or other interventions.

This matches the subjective reports I’ve received from people over the years. It doesn’t take long to see a noticeable effect. This is great news for meditation newbies, but don’t discount the beneficial effects of a long-lasting daily meditation routine. Neuroscientist Richard Davidson, of the University of Wisconsin, studied both experienced and novice meditators. He found long-time meditators to be less susceptible to “attentional blink”, which means they are able to distinguish between two closely spaced objects where other people can not. He also found that extremely experienced meditators showed less brain activation in response to distracting sounds, while showing more activity than novices in regions related to concentration.

Weekly Brain Video: Memory techniques

Andi Bell isn’t an autistic savant. He wasn’t born with photographic memory. Yet, he is currently the reigning champion in the speed category of the World Memory Championships.

This is possible because of a memory technique Andi uses, which is explained in the following videos:

[YouTube]X-xl7_hdWZo[/YouTube]

Part 2:

[YouTube]9NROegsMqNc[/YouTube]

This technique reminds me a lot of Memory Pegs, which many of you may have already heard of.

The basic idea of these memory techniques is to associate a story or image with what you want to remember. The more humorous and outlandish the story, the better. For example, if I wanted to remember to buy turkey and paper towels at the store, I might picture a live turkey comically trying to escape from a wrap of paper towels.

I use this technique when I play Brain Age, which lists words much like the experiment in the above videos. I associate 2 words with something comical, and move to the next pair. Usually, I can remember all of them, and I certainly don’t have prodigious memory.

To me, the interesting and unique part about Andi Bell’s technique is the use of a familiar route to further reinforce the memory pathways. Start at the door of your house, associate a memory with it, walk into the foyer, associate a memory with that, walk through the living room, a new memory, and so on. This is brilliant.

Men think using gray matter, women with white

If you keep up on the news, you may have seen a lot of talk recently about new research that calls into question the common assumption that women talk more than men. It turns out, men talk about the same amount, or 16000 words a day. Here is a link to an article about it. Actually, men did talk less than women by around 500 words a day, but that was statistically insignificant.

In light of this, it is interesting to explore the differences between the way the two sexes think, and to analyze whether it could have any effect on language.

One such study found that men think more with what is called “Gray Matter”, while women use more “White Matter”. Men have 6.5 times more gray matter related to general intelligence than women, and women have almost 10 times more white matter related to intelligence.

Gray matter refers to nerve cell bodies, while white matter refers to the axons that transmit nerve cell messages. You could think of gray matter a bunch of little computers, and white matter as the internet.

The interesting part is that this fact doesn’t significantly affect cognitive performance. Men and women both perform equally well on a large variety of cognitive tests, although the neural methods used to reach the same correct answer may be different. Neural processing in men is more localized, while in women it is distributed, integrating information from many different areas.

“These findings suggest that human evolution has created two different types of brains designed for equally intelligent behavior,” said Richard Haier, professor of psychology in the Department of Pediatrics and longtime human intelligence researcher, who led the study with colleagues at UCI and the University of New Mexico.

However, this could help explain why certain fields are preferred by either sex. The localized processing favored by the male mind is ideally suited to mathematical processing, while the distributed computing of the female mind is ideally suited to – you guessed it – highly developed language skills.

Here is an article on the topic: http://today.uci.edu/news/release_detail.asp?key=1261

Eye exercises provide 10% memory boost


A new study led by Dr. Andrew Parker of the Manchester Metropolitan University found that moving your eyes from side to side for 30 seconds every morning can enhance your memory by, on average, 10%.

He presented 102 university students with recordings of a male voice reading 20 lists of 15 words. The subjects were then handed a list of words and asked to pick out those that they had just heard. On average, the students who had moved their eyes from side to side performed 10 per cent better than the rest. Up and down eye movement was of no use at all to recall.

According to Parker, it can also improve the accuracy of your memory, or reduce “false” memories.

Contained within the lists were “lure” words that were not in the spoken list but were similar to some of those that were. Students who had moved eyes sideways were 15 per cent better at ignoring the misleading words.

Why would eye exercises improve memory? Dr. Parker explains: 

“One reason for this is that bilateral eye movements may improve our ability to monitor the source of our memories.” He said that people are often confused over whether a memory is real or imagined, such as whether a bill was paid or a door locked.

“The problem is to determine the source of one’s memory — real or imagined. Bilateral eye movements may help us to determine accurately the source of our memory”.

Horizontal eye movements are also theorized to enhance communication between the left and right brain hemispheres.

This reminds me of the controversial EMDR (Eye Movement Desensitization and Reprocessing) technique for PTSD, which I admittedly don’t know a whole lot about.

It also reminds me of NLP eye-accessing cues, which also deals with memory.

I have been experimenting with this the last few days since reading the article. I can’t say I have found a major improvement in memory (but then, it is probably hard to consciously notice a 10% improvement in anything). I do, however, enjoy the feeling I get after 30 seconds of uninterrupted side-to-side eye movement. A meditation instructor I had years ago would use eye movement techniques to quickly enter an alpha state.

Here’s the full article: http://www.timesonline.co.uk/tol/news/uk/health/article1750866.ece

Meditation sharpens the mind, attention, and the distribution of neural resources

Lots and lots of meditation“You can imagine that life is a series of attentional blinks, and we might be missing an awful lot of what’s going on.” 




This has been all over the news recently, so you might have already heard of it, but since it so relates to what we do I thought I would mention it here anyway.

A group of researchers from the University of Wisconsin have studied the effects of meditation on the brain’s ability to manage its attentional resources. Specifically, they studied the phenomenon known as “attentional blink”, or the inability of most people to discriminate between closely spaced visual targets.

Neuroscientist Richard Davidson explains:

Paying attention to facts requires time and effort, and since everyone only has a limited amount of brainpower to go around, details can get overlooked. For instance, when two pictures are flashed on a video screen a half-second apart, people often miss the second image.“Your attention gets stuck on the first target, then you miss the second one,” Davidson said. This is called “attentional blink,” an effect akin to how you might overlook something when you blink your eyes.

However, meditation appears to decrease this effect, sharpening the ability of the brain to focus attention and recognize targets rapidly.

Davidson studied volunteers before and after training in meditation. Specifically, they were trained in Vipassana meditation (which is often mentioned on our forums by the way).

They found that after meditation training, subjects required less time to spot details than before. Subjects were asked to discriminate between numbers flashed rapidly along with letters on a computer screen. To many people’s surprise, their ability to detect the second number improved within the “attentional blink” time frame.

In recent years, scientists have found meditation affects brain functions. For instance, research into Tibetan monks trained in focusing their attention on a single object or thought revealed they could concentrate on one image significantly longer than normal when shown two different images at each eye. Another study of people who on average meditated 40 minutes daily found that areas of their brains linked with attention and sensory processing became thicker.



I have read similar findings before. One example would be Habituation, or the tendency of the mind to give progressively weaker responses to sensory stimuli. Have you ever noticed how quickly you can become accustomed to sounds in your environment, to the point where you no longer even notice them? That is an example of habituation. It happens with the vast majority of people, but not as much with experienced meditators.

Here is a quote from Professor Shantha Ratnayake:

“To understand these phenomena let us imagine that a person who is reading quietly is suddenly disturbed by a loud noise. If the same sound is then repeated with a few seconds later his attention will again be diverted, only not as strongly nor for as long a time. If the sound is then repeated at regular intervals, the person will continue reading and become oblivious to the sound. A normal subject with closed eyes produces alpha waves on an EEG tracing. An auditory stimulation, such as a loud noise normally obliterates alpha waves for seven seconds or more; this is termed alpha blocking. In a Zen master the alpha blocking produced by the first noise lasts only two seconds. If the noise is repeated at 15 second intervals, we find that in the normal subject there is virtually no alpha blocking remaining by the fifth successive noise. This diminution of alpha blocking is termed habituation and persists in normal subjects for as long as the noise continues at regular and frequent intervals. In the Zen master, however, no habituation is seen. His alpha blocking lasts two seconds with the first sound, two seconds with the fifth sound, and two seconds with the twentieth sound. This implies that the Zen master has a greater awareness of his environment as the paradoxical result of meditative concentration.”




Here’s an article on the topic: http://www.livescience.com/health/070507_mental_training.html

Here’s a link to the University of Wisconsin study: http://biology.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pbio.0050138

Also mentioned in the article is what this research could mean for people with ADD/ADHD. Perhaps meditation will be part of a recommended regimen for people with ADD in the future.

Here is another interesting excerpt:

“One of the fundamental mysteries that is now becoming better understood as we go along but which is still a breakthrough area of research is neuroplasticity, the idea that we can literally change our brains through mental training,” Davidson told LiveScience. “Certain kinds of mental characteristics such as attention or certain emotions such as happiness can best be regarded as skills that can be trained.”

Happiness as a skill? What an amazing paradigm shift that would be for most people. :)